An analytic Grothendieck Riemann Roch theorem
نویسندگان
چکیده
منابع مشابه
Integral Grothendieck-riemann-roch Theorem
in the Chow ring with rational coefficients CH(S)Q = ⊕nCH (S)Q. Here ch is the Chern character and Td(TX), Td(TS) stand for the Todd power series evaluated at the Chern classes of the tangent bundle of X, respectively S. Since both sides of (1.1) take values in CH(S)Q := CH (S)⊗Q, only information modulo torsion about the Chern classes of f∗[F ] can be obtained from this identity. The goal of o...
متن کاملThe Grothendieck-riemann-roch Theorem for Varieties
We give an exposition of the Grothendieck-Riemann-Roch theorem for algebraic varieties. Our proof follows Borel and Serre [3] and Fulton [5] closely, emphasizing geometric considerations and intuition whenever possible.
متن کاملGrothendieck-riemann-roch and the Moduli of Enriques Surfaces
A (complex) Enriques surface is a projective smooth connected algebraic surface Y over C with H(Y,OY ) = H (Y,OY ) = (0), (Ω 2 Y ) ⊗ 2 ≃ OY but Ω 2 Y 6≃ OY ([CF]). In this note we give a short proof of the fact that the coarse moduli space of complex Enriques surfaces is quasi-affine. This was first shown by Borcherds [B] using the denominator function of a generalized Kac-Moody superalgebra (t...
متن کاملCohomology and the Riemann-Roch Theorem.
1. Let M be a complex-analytic manifold of (complex) dimension n, and let S be a non-singular analytic subvariety of M of dimension n 1. At each point p e S we can introduce local analytic coordinates zp, .. ., zp on M with center at p such that zp = on S and such thatz, ..., x become local coordinates on S. We denote by Qr = Qr(M) the faisceau of the germs of holomorphic r-forms, and by Qs the...
متن کاملAn arithmetic Riemann-Roch theorem in higher degrees
We prove an analogue in Arakelov geometry of the Grothendieck-RiemannRoch theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2016
ISSN: 0001-8708
DOI: 10.1016/j.aim.2016.02.031